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Abstract 
The goal of this effort is to mature and demonstrate Portable Operating System 

Interface (POSEX) features for strike fighter avionics software. The maturation and 
demonstration focused on assessing the performance and security of selected POSIX 
interfaces   The Hughes Aircraft Corporation Avionics Operating System (AOS) was 
used as a benchmark to compare the performance and security results from the POSIX 
assessment. 

The Ada/POSIX Maturation (APM) effort implemented, demonstrated, and 
evaluated the latest drafts of Ada bindings to the POSIX real-time standards. The AOS 
was extended to support the new POSIX application programming interfaces (APIs). The 
real-time features of POSIX and their performance characteristics were measured and 
analyzed by executing a test suite that contained these features. 

The analysis of POSTX for secure time critical avionics systems helped quantify 
and reduce the risks of adopting POSIX for new strike weapon systems. The acceptance 
of a standard operating system API is critical when re-using software artifacts since the 
operating system and its API define the foundation for the application software 
architecture. Specifying the API early in a program facilitates the re-use of software 
developed during the concept demonstrations of the operational system. Also, significant 
investments in existing avionics applications can be leveraged when the software 
architecture and the specified API are backward-compatible. 



1.0 Introduction 
Statement of the Problem 

Software development and post deployment support costs are a significant portion 
of an avionics system's life cycle costs. Increases in software productivity through the re- 
use of existing avionics domain software necessitate the acceptance of standard software 
interfaces. The standardization of the operating system interface facilitates the re-use of 
application code, tests, designs, architectures, specifications, and knowledge as the 
operating system interface is reflected in each of these. Software development and 
maintenance are also improved by the commonality across avionics subsystems, 
platforms and military services. 

Advanced military aircraft objectives demand security and real-time 
characteristics from avionics operating systems. These characteristics are not assured in 
POSDC as the standard is still quite new and implementations of critical components such 
as real-time extensions have only just begun to appear. The standardization of Ada 
bindings to POSIX has lagged the C language bindings. POSDC was originally intended 
as a set of standard interfaces to UNIX-like operating systems and has never been used 
for an avionics system. Therefore, the specification of POSIX for an avionics program 
involves cost, schedule and performance risks. The reduction of these risks are made 
possible through the evaluation and demonstration of the security and real-time 
characteristics of the API and its implementation. 

NOTE: Throughout this report, references to various Institute of Electrical and 
Electronic Engineers (IEEE) POSIX standards are made with the shorthand "POSK.n'\ 
which means IEEE POSIX Standard 1003.«. See section 4.0, "References", for the 
complete titles of the standards. 

Problem Attack 
The task of evaluating the suitability of POSIX to advanced avionics systems 

requires an analysis of the relative performance, security features, and difficulty of 
implementing the POSIX Ada bindings, i.e., complexity. This can only be accomplished 
through the implementation, demonstration, and evaluation of a proven advanced 
avionics operating system that incorporates the relevant POSIX functionality. 

For the APM effort, Hughes leveraged the AOS. The AOS, developed by 
Hughes, is used in over one million lines of avionics application code. The AOS API is 
currently being used on F-18 and F-22. 

Hughes identified the relevant profile of POSIX Ada bindings, implemented those 
bindings in the AOS, and demonstrated a comparison of AOS API and POSIX API 
performance. The results of this approach assisted in determining the feasibility of using 
an Ada POSIX operating system in an embedded avionics system. In addition, a better 
understanding of the benefits and risks associated with POSIX based on detailed facts and 
data were accomplished. 



Tasks Completed For This Study 
Four tasks were undertaken for this study: 

Task 1: Select Candidate POSIX Features. 

The POSIX standards are intended to support a very broad selection of platforms 
including supercomputers, mainframes, workstations, personal computers, and embedded 
systems. The POSIX working groups have identified and produced standards for various 
environments, some of which are not necessary or useful in avionics systems. P0SIX.5b 
and the dedicated real-time profile (POSIX. 13, PSE52) were reviewed and evaluated to 
identify the subset of the POSIX Ada bindings to be implemented in the AOS. 

Task 2: POSIX Avionics Operating System Development 

The AOS was modified to support the POSIX subset identified in Task 1. The 
AOS maintained backward compatibility from the AOS API where feasible and where it 
did not interfere with the demonstration in Task 3. A test suite was then created to 
exercise and time the comparable features of the two APIs in functionally equivalent 
ways and report the results. 

Task 3: POSIX Avionics Operating System Demonstration. 

Hughes demonstrated the functionality and performance of the POSIX subset. 
The performance characteristics of the POSIX API were compared with an AOS API 
baseline The demonstration depicted system service execution times, performance and 
sizing information for each feature of the POSIX subset. In addition, a security impact, 
and a description of any implementation difficulties encountered during Task 2 were 
documented. 

Task 4: POSIX Assessment and Report 

The report evaluates the feasibility of using an Ada POSIX operating system. The 
functional capabilities and performance of the POSIX subset were summarized. Any 
performance shortfalls, inadequate or immature POSIX standards, security issues, and 
implementation difficulties were cited. 

Approach 
The POSDC interfaces features to be demonstrated were selected based on the 

following criteria: 

• The POSIX services are from those described in the most recent draft of 
POSDC.5b. 

• The AOS must support the same or functionally equivalent services to 
provide a basis for comparison. For example, this eliminates features such as 
Shared Memory (which the AOS lacks) or Global Bulk Memory Services 
(which POSIX lacks.) 

• The services should be commonly used by applications. Demonstration of 
esoteric features would prove little about the feasibility of using POSDC in 
an avionics system. 



• The functionality should be present in the POSIX.13 Dedicated Real-time 
Profile. This is the "avionics" profile. 

• For the most part, the services should be time-critical. 

Based on these criteria and funding constraints, the following features of POSIX 
were selected to be implemented: 

• Semaphores 

• Timers 

. Event Notification (POSIX Real-Time Signals and AOS Event Clusters) 

. Interprocess Communication (POSK Message Queues and AOS Labeled 
Messages) 

Resources & Tools Used 
The AOS microkernel, called the Functional Core, was modified to execute on the 

DMV (DeMonstration Vehicle), a Hughes i960-based breadboard. This platform was 
used in the initial development of the AOS before the Common Integrated Processor 
(CIP) hardware was available. This board runs at 16 MHz, and supports 2 Mbytes of 
static RAM- 

The Irvine Compiler Corporation (ICC) i960 MX Ada Compilation System 
(version 7.7.5B) was used to compile and link the AOS POSIX implementation and test 
suite. Both the AOS and the POSIX interfaces were implemented in Ada, supplemented 
by insertions from package Machine_Code where necessary. 



2.0 Data 
For each POSIX service, data was collected for Timings, Executable Size, 

Complexity, Security, and Implementation Difficulties. 

Timings were collected in an effort to discover if there were any insurmountable 
problems to achieving acceptable performance in the semantics of the POSIX services. 
The timing results of the features identified in section 1.0 are detailed in the Service 
Timings section for each service detailed in section 2.0. The majority of metrics collected 
were based on the suggestions in POSIX.lb, Annex G—"Performance Metrics". 

Executable Size was measured to determine if implementing the POSIX subset 
would result in unacceptable memory consumption, since memory is usually a scarce 
resource on embedded targets. 

Complexity was measured by a Source Lines of Code (SLOC) count. This 
measurement relates to cost, as more SLOC means more time to produce the code. 

An analysis of the security impacts of the POSIX services was performed to 
discover where security problems may exist and how they may be remedied. Also, the 
impact on the POSIX services by the interfaces that implement security was examined. 

Lastly, any implementation difficulties seen during the implementation of the 
POSIX interfaces were summarized. 



Service #1: Semaphores 
Semaphores are a low-level synchronization primitive that are used by tasks or 

processes to synchronize their execution or to insure mutual exclusion when accessing 
shared data structures. A semaphore is an integer variable associated to a group of 
suspended tasks. The state or value of a semaphore can be accessed and altered only at 
creation/initialization and by the Lock and Unlock operations.Binary semaphores can 
only assume the value 0 or 1. Counting semaphores can assume non-negative integer 
values (although some implementations of semaphores let the count go negative to 
indicate the number of suspended tasks). 

The Lock operation on a semaphore S is as follows: 

if   S   >  0   then 
S   :=   S   -  1; 

else 
suspend on  S; 

■    end if; 

The Unlock operation on a semaphore S is : 

if   (one  or more  tasks  are waiting on  S)    then 
let  one of  these tasks proceed; 

else 
S   :=  S  + 1; 

end if; 

Both Lock and Unlock are atomic operations. Both POSIX and AOS support 
counting semaphores. 

POSIX defines two types of counting semaphores: anonymous and named. The 
operations (Lock and Unlock) on theses two types of semaphores are the same once the 
semaphore exists; the difference is in how the semaphore is created and destroyed. 
Named semaphores have a name (text string) associated with them and are opened, closed 
and unlinked in a manner similar to a file. Named semaphores allow the sharing of a 
semaphore between unrelated processes (that is programs). Anonymous semaphores have 
no name (hence the term) and are created and destroyed by calls to Create and 
Destroy rather thatOpen and Close. Anonymous semaphores may also be shared 
between any processes that have access to the semaphore if the Process Shared attribute 
of the semaphore is set. 

The AOS only supports anonymous semaphores. Since the AOS was created for a 
system where all the programs running are written in Ada, it was believed that 
multitasking would be achieved though the use of Ada tasks, not multiple cooperating 
programs. Since tasks within a single Ada program share the same address space, they 
can utilize anonymous semaphores. Named semaphores were therefore considered 
unnecessary. In addition, the AOS does not allow the sharing of anonymous semaphores 
between processes. 



Service Timings 
As shown in Figure 2.1.1, the difference in service timings between the AOS and 

POSIX API implementations is negligible. This is to be expected; the specification of the 
operations on POSIX semaphores doesn't differ greatly from AOS semaphore operations. 
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Figure 2.1.1: Semaphore Timings 

Executable Size 

As shown in Figure 2.1.2, the executable size of the POSIX semaphores was 2.4 
times as large as AOS semaphores due to the additional functionality of named 



semaphores- Essentially, all of the size difference between the two implementations is 
due to the named semaphores functionality. Overall, the size of POSIX anonymous 
semaphores is the same as the AOS implementation. 
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Figure 2.12:   Semaphore Executable Size 

Complexity 

Since POSIX semaphores defines additional functionality, it follows that its 
SLOC count would be greater than the AOS. The POSIX implementation was 
approximately 1.9 times as large as the AOS, as shown in Fig. 2.1.3. 

PCS POSIX 

Complexity 

Figure 2.1.3:   Semaphore Statement Lines of Code (SLOC) 

Security 
POSIX allows the sharing of semaphores between processes. This allows the 

semaphore count to be used as a covert channel. A covert channel is an unsanctioned 
communication path that could be used to transfer data illicitly. To prevent this, access to 
the semaphores needs to be mediated and restricted by the OS. 

Restricting access to semaphores has several facets. The first concerns named 
semaphores. Access must be checked on an Open of a named semaphore to insure that 
the calling process has the necessary privilege to access the semaphore. The POSIX 
implementation must also ensure that semaphore descriptors (the abstract handle that the 
OS gives back to the application on an Open) cannot be propagated (via interprogram 
communication or shared memory) to other processes that do not have the privilege to 
access the semaphore. This requires that the semaphore descriptor only be valid within 
the process that originally received the semaphore descriptor from the OS. This same 
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restriction must be applied to anonymous semaphores as well. Therefore, for security 
concerns, the Process Shared attribute of POSIX anonymous semaphores must always be 
set to false. 

The restriction that a semaphore descriptor is only valid within the process that 
originally received the semaphore descriptor from the OS does not apply to forked child 
processes. A forked child process is an exact duplicate of the parent that spawned it; 
therefore it is reasonable that the child should be able to access any data that the parent 
has access to. 

Implementation Difficulties 
There were no unusual difficulties in implementing POSIX Semaphores. 



Service #2: Timer Services 
The AOS and POSIX have similar services to read/set the system clocks and to 

create and arm both absolute and relative interval timers based on those clocks. 

Service Timings 
The service times for the creation of a timer, the reading of the system clock, and 

the disarming of timers (both armed and quiescent) were quite similar on the two 
implementations, differing by only a few microseconds. However, in the initial 
implementation of POSIX timers, the amount of time needed to arm a timer was far 
greater than AOS, taking as much as 5 to 10 times as long. This was determined to be 
caused by how the POSIX time type (POSIX. Timespec) was specified. 

The draft 4.0 version of POSIX.5b specified that Timespec should have both a 
precision and a resolution of nanoseconds. On the DMV target, the system clock is a 64 
bit microsecond timer. Hence, on an arm timer request each parameter of type 
Timespec  needed to be converted to the underlying timer hardware representation. 
This conversion from nanoseconds to microseconds required 64 bit division on a target 
machine that did not directly support this. This conversion caused the additional timing 
overhead. 

After reporting the problem with the POSIX Timespec at the January 1995 
IEEE POSIX Working Group meeting, the technical editors of POSDC.5b decided that it 
was not necessary to require the resolution of the underlying implementation of 
Timespec to be any greater than the required resolution of the system clock. This 
change will allow system implementors to choose the implementation most appropriate 
for their hardware configuration. Figure 2.2.1 illustrates the change in performance 
between the two implementations. Overall, this problem with the POSIX Timespec 
implementation demonstrated the need to conduct a "hands-on" analysis of standard 
operating system features before they are incorporated into an avionics operating system. 
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There was also significant difference in the latency of notification of timer 
expirations between the AOS and POSIX timers. This is the difference between the time 
that a timer was set to expire and the time that the first instruction is executed in the task 
waiting for the timer expiration. The POSIX latency was greater by slightly more than a 
factor of two, primarily due to the greater overhead of signal delivery (the POSIX method 
of asynchronous notification) as opposed to the equivalent AOS method of signaling an 
event cluster. Figure 2.2.2 compares the AOS and improved POSIX timings.  (Recall that 
these POSIX timings were improved as a result of the POSIX Working Group's decision 
not to require the resolution of the underlying implementation of Timespec to be any 
greater than the required resolution of the system clock.) 
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Figure 2.2.2: Timer Tunings 
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Figure 2.22 (cont'd): Timer Timings 

Executable Size 
The AOS timers were 1.5 times as large as the POSIX timers, as shown in Figure 

2.2.3. This is due to additional functionality provided by the AOS interface. The AOS 
ailöws the caller to specify one or more notification mechanisms (semaphores, event 
clusters, or status blocks); this requires additional code to implement. The AOS also 
provides services to suspend and resume all armed timers. 
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Figure 223: Timer Executable Size 

Complexity 
As shown in Figure 2.2.4, the AOS timer implementation SLOC count is 1.3 

times as large as the POSIX implementation owning to the additional functionality 
mentioned in above in Executable Size. 
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Figure 2.2.4: Timer Statement Lines of Code (SLOC) 

Security 
Since timer requests are contained within a single process, there are no security 

issues regarding their use. The one time related service that may have security 
implications is the setting of the system clock (or any clock that another process may 
read). The POSIX standard does allow an implementation to restrict the setting of the 
system clock to those with some implementation-defined "appropriate privilege." 

Implementation Difficulties 

The one major thorn in the side of implementors will be the arithmetic operations 
on POSIX . Timespec. In POSLX.lb, the structure Timespec was defined as a C 
structure with two members: tv_sec (a signed seconds count) and tc_nsec (an 
unsigned nanoseconds count). This data structure appears in the Ada binding as the 
private type POSIX. Timespec. (It was decided to make the type private to allow 
greater freedom to implementors to utilize the best representation for the type.) Package 
POSIX defines the arithmetic operations on Timespec, conversions operations to and 
from standard. Duration, as well as services to get and set the seconds and 
nanoseconds attributes of Timespec variables. 

However, an oddity about how Timespec represents negative time values 
makes some of these operations difficult to implement. If the seconds attribute is signed, 
but the nanoseconds attribute is unsigned, then the representation for -0.6 seconds must 
be (seconds = -1, nanoseconds = 0.4x109). This leads to the following problem: If the 
data representation of Timespec follows the C interface, the conversions to and from 
seconds, nanoseconds and Timespec become trivial to implement, but the arithmetic 
operations become quite complicated and (perhaps more importantly) slow. If the 
implementation of Timespec is a simple signed long integer count, the arithmetic 
operations become less complicated, but the complexity of the conversion operations 
increases substantially. In either case, the implementation has a performance penalty. 
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Service #3: Event Notification 
POSIX currently has the delivery of signals as its only form of asynchronous 

notification (that is notification of asynchronous events such as timer expiration, 
asynchronous I/O completion, etc.). The POSIX real-time extensions adds the concept of 
real-time signals, which provide for queuing (normal signals are not normally queued,) 
and the attaching of data to a signal occurrence. Real-time signals are used as follows: 
each type of service that needs to provide an asynchronous notification of completion 
takes as a parameter a value of POSIX_Signals . Signal_Event. This data structure 
contains at least the following pieces of information: 

• which signal to send when the event of interest occurs 

• the notification type [currently either Signal_Notif ication (sendthe 
specified signal) or No_Not if ication (do nothing)] 

• an optional piece of user data to be queued along with the signal. 

The user can then call one of several services that allow the calling task to be suspended 
until one of a set of specified signals occur, or (optionally) until a time-out occurs. 

AOS semaphores and event clusters serve the same function that POSIX real-time 
signals do. The services that require asynchronous notification allow the user to provide a 
semaphore or event cluster (or both) and an optional status block. When the event of 
interest occurs, the provided notification mechanisms will be updated. The calling task 
may poll on the status block, or suspend itself on the semaphore or event cluster waiting 
for the event of interest to occur. 

Service Timings 
The POSIX services to send or await a signal occurrence were compared to the 

AOS event clusters, since event clusters are more functionally equivalent to POSIX real- 
time signals than semaphores are. As noted in the timer expiration latency times, the time 
to send or receive a POSIX signal is significantly greater than the equivalent AOS time to 
signal an event cluster, or receive notification that an event cluster has been signaled (by 
approximately a factor of 2.) Low latency in responding to events is an important aspect 
of real-time systems, making this long latency a significant problem. 

The somewhat complex semantics of signal delivery in POSIX is the main cause 
of the longer latency. The processing to send a signal involves checking which signal is 
being sent (some signals such as Signal_Null and Signal_Kill have special 
semantics), whether the signal is currently ignored or blocked from delivery, etc. 
Overall, signals are a high-overhead means of asynchronous notification of events. 
Allowing for the use of lower over-head synchronization mechanisms (such as 
semaphores or condition variables) in asynchronous notification would seem to be a 
reasonable addition to the real-time POSIX standards. 

It should be noted that the original specification of real-time signals was targeted 
at single-threaded C programs. In such an environment, a relatively efficient 
implementation of real-time signals can be realized. This is due to the fact that there can 
never be more than one thread of control waiting for the signal to occur. When the 
notification signal is sent, there is no question of which thread is waiting for the signal 
since there is only one thread. 
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However, in a multi-threaded environment (whether in C or Ada) the 
implementation becomes far more complex. It is possible to have multiple tasks 
suspended, waiting for a possibly overlapping set of signals. This added difficulty is the 
other component of the longer latency times recorded for POSIX signals. 

There are two basic multi-threaded implementations for real-time signals. The 
first implementation has all the tasks in one long queue. When a signal is delivered, the 
OS must search the queue for the first task which is waiting for that signal. The time to 
deliver a signal is a function of how many tasks are currently suspended waiting for 
signal notifications, and the order in which they were suspended. This cannot generally 
be predicted by the application, making timing analysis difficult. This approach is quite 
simple to implement, but has the disadvantage that it is non-deterministic, and thus 
unsuitable for real-time systems. 

The second implementation has a queue of tasks for each signal that can be 
waited for, and when a task suspends waiting for a set of signals, it must be placed on 
multiple queues, one for each signal in the set. (For example, if the task were waiting for 
signals X, Y, and Z, the task would be placed on the queues associated with signals X, Y, 
and Z.) When a signal is delivered, the OS simply dequeues the task at the head of the 
queue associated with the delivered signal; there is no search involved. If the task is 
waiting for n signals, the OS must also remove the task from the «-1 other queues that it 
is on. However, if some care is exercised in setting up the data structures, this can be 
performed in a manner such that the amount of time required to do this is a linear 
function of the number of queues that must altered. This makes the time to deliver a 
signal a function of how many signals the task is simultaneously waiting for (the time 
should increase a fixed amount for each additional signal in the set) If the task is 
waiting for only one signal, the time to deliver the signal should be essentially constant. 
This will allow an application to account for the event notification overhead in their 
timelines. 

Figure 2.3.1 illustrates the timing data for POSIX Signals. 
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Figure 2.3.1: Signal Timings 
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Executable Size 

As shown in figure 2.3.2, the size of the POSIX implementation was 1.6 times as 
great as the AOS event cluster mechanism. This is due to the more complex semantics 
associated with POSIX signals. Note that this size comparison compares only static code 
and data structures; it does not account for the dynamic memory required for the 
notifications and their linking onto either POSIX or AOS data structures. 
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Figure 232: Signal Executable Size 

Complexity 

As shown in Figure 2.3.3, the SLOC count for the POSIX signals was 2.2 times as 
great as the AOS event clusters, and again this is due to the more complex semantics 
associated with POSIX signals. 
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Figure 233: Signal Statement Lines of Code (SLOC) 

Security 

POSIX signals as they are used for asynchronous event notification do not present 
a security problem since the process receiving the signal is the same one that requested 
the notification. A data flow from a process to itself is always permissible (and in fact, 
impossible to prevent). However, POSLX signals can be used for interprocess 
communication (AOS event clusters can only be used for intraprocess communication) 
and thus are a data channel that must be mediated by the OS. POSIX. le addressed these 
issues, and proposes several changes and additions to the semantics of sending a signal. 

The first addition assumes that each process has an associated Mandatory Access 
Control (MAC) label. When sending a signal between processes, the label of the sending 
and receiving process must be compared according to the following rules: 

(1) If the MAC label of the sending process is equivalent to the MAC label of 
the receiving process, then no additional requirements are posed. 
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(2) If the MAC label of the sending process dominates the MAC label of the 
receiving process (i.e., the signal is being "written down"), then the sending 
process must have appropriate privilege. 

(3) If the MAC label of the sending process is dominated by the MAC label 
of the receiving process, (i.e., the signal is being "written up"), then it is 
implementation-defined whether the sending process requires appropriate 
privilege. 

(4) If the MAC label of the sender and the receiver are incomparable, then 
the sending process must have appropriate privilege. 

This checking would take place during what might be considered a time-critical 
service and would therefore have an impact on performance. The AOS design has 
attempted to confine such checking to non-time-critical "connect" or setup services. This 
one-time check determines if the caller has the appropriate privilege for the requested 
capability. (If the caller does, a capability token is passed back to the caller.) This token is 
then passed back to the OS during time-critical services as proof that the caller has the 
appropriate privilege to perform certain tasks. This method however, will not work in the 
case of signals since it is not known until a signal is sent who the receiving processes) 
will be. 

A second change involves the use of Signal_Null. IfSignal_Null is sent 
to a process, no actual signal is sent, but all the necessary error checking takes place. This 
can be used to determine if a process with a certain process ID exists. POSDC. le 
specifies that if the MAC label of the sending process does not dominate the MAC label 
of any receiving process and the sender does not have appropriate privilege, then the 
system returns an error indicating that the receiving process does not exist. 

The last change involves granting the capability for processes to block certain 
"unblockable" signals (such as Signal_Kill). 

Implementation Difficulties 

The complex semantics associated with POSIX signals make their implementation 
challenging; however, there were no unexpected difficulties. Yet, there is one element of 
the POSDC real-time signal delivery model that bears discussion. 

In order to queue a signal for delivery, a POSDC process must utilize some system 
resources (mainly, memory for the data). POSDC places a resource limit on how many 
queued signals a process may send and simultaneously have pending at receiving 
processes. A difficulty arises from the fact that this limit is not how many signals the 
process may itself have pending (i.e., signals it is receiving) but how many it can send. 
This complicates reclaiming these resources when the sending process terminates and still 
has signals pending at other processes. Since the resources being used to queue the sent 
signals are still in use by the receiving processes), they cannot be reclaimed during the 
sending process' termination. (There is no rationale in the POSDC standards for making 
this limit the number of queued signals that can be simultaneously sent versus received. 
One explanation is that if the limit were a receive limit, one process could monopolize 
another process' signal queuing resources by repeatedly sending a signal to that process, 
effectively preventing reception of queued signals from other sources.) 
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Service #4: Message Queues 
POSIX Message Queues provide services for interprogram communication. A 

message queue is a collection of messages, each message being an array of byte values 
with an associated priority. Within the message queue, the messages are kept in priority 
order with first-in, first-out order among messages with the same priority. It is left to the 
application to impose a data structure upon a message. 

POSIX Message Queues are accessed by applications in a way similar to files. 
A queue is opened (and optionally created if it does not exist) using a POSIX pathname. 
Send and Receive operations enqueue and dequeue messages from a queue. Once 
created, a queue's name has global scope, and the queue is accessible by all processes 
having the proper access permissions. Any number of processes may have a queue open, 
within system configuration limits, for reading, writing, or both. 

The AOS Labeled Message services also provide for interprogram 
communications, but use a very different approach and mechanism. This makes a direct 
comparison very difficult. In the AOS, Labeled Messages are known and statically 
declared at compile time, and contain the destination embedded in the message. Buffer 
management is left to the application. Different queues deal with different priorities of 
messages which are statically known, and thus can be statically created. With POSIX 
Message Queues, messages can be dynamically created and contain only data. Processes 
that wish to communication must Open the same queue via the same pathname, which 
again, may be dynamically determined, so queues must be dynamically created. 

Finally, the Labeled Message services also support distributed inter-processor 
communications while Message Queues do not. Thus, the Executable Size and 
Complexity comparisons have been adjusted to discount interprocessor communications. 

Service Timings 
The AOS Labeled Message services and mechanism were designed to perform as 

much verification and validity checking as possible when the application is built instead 
of at run-time. The run-time services themselves need perform little or no checking. The 
POSIX Message Queue services on the other hand have no such build-time checking, and 
all validity checks must be performed at run-time. This results in the nearly double the 
overhead in a POSIX Send and Receive operations versus the AOS Transfer (the 
actual AOS subprogram is called Send, but it performs both the send and receive 
operations in one step.) 

The AOS Labeled Message mechanism also allows the queues to be statically 
created, since the number of queues is based only on the different message priorities 
available. Thus, no "queue creation" is necessary and the time to open a channel for a 
message is always repeatable. The POSIX Message Queue services determines the 
destination of a message (the queue) when the queue is opened or created, and thus may 
need create new queues at run-time. This is apparent in the rather large 
Open_Or_Create time for a new queue, but a very short Open_Or_Create time for 
an existing queue. 
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Figure 2.4.1: Message Queue Timings 

Executable Size 

The size of the AOS Labeled Message implementation is 1.9 times the size of the 
POSIX Message Queue implementation. This is due to the additional functionality in 
AOS Labeled Messages. Labeled Messages provide several notification methods and 
transfer modes not present in POSIX Message Queues. The memory for the modules that 
provide interprocessor communications has been discounted from the AOS total, but 
some of this functionality is still present in the remainder of the code. 
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Figure 2.42: Message Queue Executable Size 

Complexity 

The SLOC count for AOS Labeled Messages is about 1.5 times the SLOC count 
for POSIX Message Queues. Again, this is due to the additional functionality of AOS 
Labeled Messages. 
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Figure 2.4.3: Message Queue Statement Lines of Code (SLOC) 

Security 
Message passing interfaces have obvious security implications, since their only 

function is to pass data. Since POSIX Message queues must be opened or created before 
they can be accessed, its is a relatively simple process to add the necessary access 
privilege checks during the opening/creation of the message queue. However, message 
queue descriptors must follow the same restrictions that semaphore descriptors do; 
namely that a message queue descriptor is only valid within the process that originally 
received it from the OS. Failing to constrain the passing of message queue descriptors 
would allow for the possibility of opening an illicit high bandwidth data channel. 

Implementation Difficulties 

A problem with POSIX Message Queues is that the current Ada binding restricts 
the possible implementations of message queue descriptors despite the descriptor being a 
private type. The Set_Attributes operation specifies that the descriptor is an "in" 
parameter only, which forces attributes to be stored somewhere other than in the 
descriptor. 
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3.0 Summary & Recommendation 

Summary 

Technics/ Findings 
The general findings of this study are that some of the POSDC services have 

acceptable service times such that they can be used in a real-time avionics system. 
However, there are some issues with the long latencies introduced by the use of signals 
for asynchronous notifications. 

In general, the POSDC services tend to occupy more memory than their AOS 
counterparts. This is due to additional functionality, much of which may not be useful in 
a real-time avionics system. 

The POSIX services lack the security features needed in a multi-level secure 
environment. Adding the needed security features is a non-trivial undertaking. Specifying 
the security aspects of a specific system is implicitly difficult. Specifying a generic set of 
security features is even more difficult as previous attempts at adding security features to 
POSDC have shown. (So little progress was made by the POSIX security Working Group 
that in October of 1995, a motion was made to consider removing their Project 
Authorization Request). 

A major piece missing from POSIX is a set of real-time distributed IPC (Inter- 
Process Communication) interfaces. There is a POSIX working group dedicated to 
producing a standard in this area, but they have only recently produced their first cut at a 
set of language bindings; it may be several years before a usable standard is approved. 

The findings of this study have attempted to point out generic aspects of the 
POSDC Ada bindings that will hold true in most, if not all, implementations. However, 
when interpreting these findings, it must be remembered that this is only one 
implementation of the POSIX Ada bindings. Many aspects of the target system and of the 
tools used to implement the binding can affect the timing and sizing of an 
implementation. The suitability of using a POSIX implementation in a specific system 
must still be determined; simply using an implementation that is compliant to the 
standard is not a guarantee of suitability in of itself. 

Other Areas of Concern 
This report has thus far focused only on the technical aspects of the use of the 

POSIX Ada bindings. However, there are other potential pitfalls of using POSIX and 
Ada. 

• Vendor Support for POSIX 

Very few of the shrinking number of Ada vendors are supporting bindings to 
POSDC. All commercial OS vendors are targeted to the C language market, and so they 
tend to support only a C binding if they support POSDC at all. Those who need an Ada 
binding to the POSDC may therefore be forced to write their own or pay someone to 
create one for them. 

• Flagging Support for POSDC 
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Attendance at the POSIX working group meetings has been steadily shrinking for 
the last 2 years. Without support from interested parties (in the form of people to work on 
the standards), there will be no forward movement of the POSIX standards. 

• Ada Q5 And POSIX 

It is an open question whether an Ada 95 compiler that fully supports the Systems 
and Real-Time Annexes obviates the need for a POSIX Ada API, since many of the 
functions of the POSIX API are met through the specification of the Ada 95 language 
itself.   For example, semaphore services might be replaced by Ada 95's protected objects 
or packages Ada.Asynchronous_Task_Control and Ada.Synchronous_Task_Control. 
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Recommendations 

1)   Implement more services. 
During this study we have implemented a small subset of POSIX services: 

Semaphores, Timers, Signals, and Message Queues. We have identified issues and 
gathered data only made possible by implementing a POSIX interface in a real system. 
Therefore, we recommend that work be continued to implement more of the POSIX 
features specified in the real-time profiles. Some of these POSIX features are: 

. lyfiitexes/Cnndition Variables: Synchronization mechanisms that include 
priority inheritance and priority ceiling mutexes. This would be helpful to 
implement if we pursue a Project Authorization Request (PAR) to include 
Condition Variables as an additional asynchronous notification mechanism, 
since this will allow us to have a working prototype. 

. Process Creation/Termination: Services to create new processes (i.e., Ada 
programs or active partitions) and return status on their termination. 

. ghared Memory/Memory Protection: An issue in a secured system. We 
need to implement allocation/management of shared memory, implement 
the setting of page protections, and identify issues. 

. Task Scheduling: An implementation of the Ada 95 scheduling model. This 
task would require support from a compiler vendor since Ada pragmas are 
involved. 

• Synchronous & Asynchronous I/O: I/O in step with and in parallel with 
program execution. Synchronous I/O calls are: open, close, read, write; 
basic I/O services. The asynchronous calls allow reads/writes to proceed in 
parallel with program execution. (Synchronous I/O is required first, since 
you must open a file/device before submitting read/write requests.) 
Implementing I/O requires a decision on the interconnect bus type (1553, PI- 
Bus, SCI, etc.). 

. Synchronized I/O & Prioritized I/O: Features that may or may not be 
needed in an avionics environment. All AOS I/O is already synchronized 
(hence, the AOS does not do file buffering.). As for prioritized I/O, the 
AOS defines the I/O priority to be the priority of the process (i.e. the Ada 
program or active partition) and not the priority of the task/thread. All tasks 
in a program submit their requests at the same priority unless they actively 
request to submit at a lower priority. 

• fjle Descriptor Management: Includes file locks, position seeking, and file 
descriptor duplication. 

• Other: All of the more-or-less trivial packages to implement. If we reach 
this point, we will feel confident in the feasibility of using POSIX in a Real 
Time Secured Avionics Environment. This category includes system 
configuration packages, calendar services, environment services, pipes, 
memory locking (meaningless on systems without memory page swapping,) 
and other utility packages. 
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2) Define POSIX security. 
During this implementation of the POSIX features on the AOS, security 

shortcomings have been identified. There is a need to develop and recommend 
modifications to those POSIX functions to support security. Our implementation 
demonstrates that a Security Profile is needed and a task should develop this Security 
Profile. 

3) Participate in the POSIX Working Groups. 
We have found issues with POSIX that we have brought up to the POSIX 

Working Group. In particular, we have identified the need for the standard to allow 
different types of event notification besides POSIX signals. At the January, 1996 meeting 
of the POSIX Working Group, we intend to request that Semaphores or other simpler 
mechanisms be allowed for event notification 

4) Study the Impact of Ada 95 on POSIX. 
What features in Ada 95 can replace OS services? What support must an OS have 

for Ada 95? Are they necessary and what form should the POSIX bindings for Ada 95 
take? 
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